Design and Preclinical Characterization of SER-155, an Investigational Cultivated Microbiome Therapeutic to Restore Colonization Resistance and Prevent Infection in Patients Undergoing Hematopoietic Stem Cell Transplantation (HSCT)

September 29 – October 3, 2021
IDWeek 2021
Session: Novel Antimicrobial Agents, #130

Elizabeth Halvorsen, Marin Vulić, Edward O’Brien, Jessica Byrant, Mary-Jane Lombardo, Christopher Ford, Matthew Henn
Disclosure Information

The presenting author, Elizabeth Halvorsen, and all co-authors listed are employees and shareholders of Seres Therapeutics

Funding for this work was, in part, received from CARB-X
The Gastrointestinal Microbiome May Be a Key Factor in HSCT outcome

~9,500 allogeneic hematopoietic stem cell transplantation (allo-HSCT) procedures in the U.S. annually

Infection and graft-versus-host disease (GVHD) account for approximately one-third of deaths within 100 days of allo-HSCT

Frequent use of antibiotics during HSCT correlates with increased risk of bloodstream infections (BSIs), GVHD, and mortality

The gastrointestinal tract is a reservoir for potential pathogens that can cause BSIs

Mortality is doubled in patients with low microbiome diversity

Jenq et al, 2015; Taur et al, 2014; Tamburini et al, 2018; Phelan et al, CIBMTR US Summary Slides, 2020
Seres Microbiome Therapeutics are Bacterial Consortia with Specific Pharmacological Properties

Designed to target inflammatory & immune pathways & establish colonization resistance to pathogens

<table>
<thead>
<tr>
<th>Pharmacokinetics</th>
<th>Pharmacodynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engraftment of drug species</td>
<td>Change in microbiome composition</td>
</tr>
<tr>
<td>Change in microbiome composition</td>
<td>Change in microbiome function</td>
</tr>
<tr>
<td>Change in microbiome function</td>
<td>Change in host function</td>
</tr>
</tbody>
</table>

Disease susceptible baseline microbiome

Germination & vegetative growth of drug bacteria

Modulate the GI microbiome and shift microbe-associated metabolites that impact disease relevant pathways
In a Phase 3 Study, Investigational Microbiome Therapeutic SER-109 Led to Rapid Pharmacokinetic and Pharmacodynamic Changes Associated with Clinical Response in C. difficile Infection

Pharmacokinetics
- Engraftment of SER-109 dose species

Pharmacodynamics
- Increased concentration of secondary bile acids

Clinical response
- Reduction in CDI recurrence through restoration of colonization resistance
Clinical Development of SER-109 Suggests Microbiome Therapeutics May Reduce Carriage of Multi-Drug Resistant Organisms.

(1) In an open-label Phase 1 study of SER-109, carriage of VRE was significantly reduced relative to baseline (Lombardo, IDWeek 2015).

(2) In a Phase 2 placebo-controlled study, engraftment with SER-109 drug product species was associated with a significant reduction in the carriage of anti-microbial resistance genes. (Ford, IDWeek 2018).

(3) In a Phase 3 placebo-controlled study, this finding was repeated: treatment with SER-109 drug product species was again associated with reduction in the carriage of anti-microbial resistance genes (See Late Breaker Talk – Straub, IDWeek 2021).
SER-155 is an Investigational Cultivated Microbiome Therapeutic Rationally- Designed to Reduce the Risk of BSI and GVHD in allo-HSCT Patients

Hypothesis: Barrier compromise, low microbiome diversity, and concomitant GI domination by potential pathogens drives risk of BSI, GI inflammation, and GVHD in allo-HSCT patients

SER-155 design targets both host and microbiome functions to:

1. **Restore colonization resistance**
2. **Enhance epithelial barrier integrity**
3. **Reduce GI inflammation**
Decolonize pathogens associated with risk of BSI, GVHD, and mortality
- Vancomycin-resistant Enterococci (VRE)
- Carbapenem-resistant Enterobacteriaceae (CRE)

Engraftment of taxa associated with positive clinical outcomes and survival
- Lachnospiraceae
- Eubacteriaceae
- Ruminococcaceae
- Erysipelotrichaceae

Figure provided by J. Peled, adapted from Taur et al, 2016
Iterative Reverse Translational Approach to Selecting Strains for SER-155
Starts with Patient Datasets

Disease Target Identification

Multiple longitudinal patient GI microbiome datasets analyzed to identify species of functional interest for SER-155 design

Hit and Lead Identification

Preclinical screening of candidate consortia *in vitro* and *in vivo* for ability to restore colonization resistance, enhance epithelial barrier integrity, and reduce GI inflammation

Final Clinical Candidate

For each strain in lead candidate consortia, finalize safety assessments and optimize manufacturing parameters for IND submission
Reverse Translational Approach to Designing and Identifying SER-155, Starting with Patient Datasets

Multiple longitudinal patient GI microbiome datasets analyzed to identify species of interest for SER-155 design

- Observational datasets from adults undergoing HSCT (MSKCC, Univ. of Cologne)
- Interventional datasets from adults receiving Seres investigational microbiome therapeutics (SER-109, SER-287, and SER-262 clinical trials)
Multiple Longitudinal Patient GI Microbiome Datasets Were Analyzed to Identify Species of Interest for SER-155 Design

1) **Observational datasets** from allo-HSCT patients at MSKCC and Univ. of Cologne were used to identify taxa depleted post-transplant and associated with reduced risk of BSI and GVHD.

2) **Interventional datasets** from adults receiving Seres investigational microbiome therapeutics were used to further refine SER-155 candidate consortia to select species with a high probability of engrafting in the GI.
Reverse Translational Approach to Designing and Identifying SER-155, Starting with Patient Datasets

Preclinical screening of candidate consortia

- Utilize Seres human-commensal strain library (>35,000 strains) to design and construct consortia

- *In vivo* and *in vitro* assays to screen for the ability to:
 - Inhibit and outcompete VRE, CRE & other pathobionts
 - Enhance/protect GI epithelial barrier integrity
 - Reduce GI inflammation
Breadth of Candidate Consortia Evaluated in Hit-to-Lead Identification for SER-155

Over 50 candidate consortia containing different combinations of nearly 150 species were designed and tested in vitro and in vivo.

Blue lines indicate species tested and length of lines indicates increasing number of strains within a species tested.
SER-155 Strains Can Compete for Nutrients to Restore Colonization Resistance Against Relevant Pathogens VRE and CRE

Carbon source utilization profiles of VRE, CRE, and SER-155 strains were assessed across 85 carbon sources.
In vivo, candidate consortia were evaluated in mouse models of VRE and CRE colonization and oral administration of SER-155 led to a 2-3 log reduction in VRE and CRE titers compared to untreated mice.
Conclusions

• SER-155 is an investigational cultivated microbiome therapeutic designed to reduce the risk of bloodstream infection and GvHD in adults undergoing allo-HSCT by restoring colonization resistance, enhancing epithelial barrier integrity, and reducing GI inflammation.

• Preclinical assessments in vitro and in vivo support the ability of SER-155 to reduce VRE and CRE titers and restore colonization resistance.

• A Phase 1b clinical trial evaluating SER-155 in allogeneic HSCT patients is currently enrolling (NCT04995653).
Acknowledgements
Thank You