Design and Preclinical Characterization of SER-155, an Investigational Cultivated Microbiome Therapeutic to Restore Colonization Resistance and Prevent Infection in Patients Undergoing Hematopoietic Stem Cell Transplantation (HSCT)

September 29 – October 3, 2021

IDWeek 2021 Session: Novel Antimicrobial Agents, #130

<u>Elizabeth Halvorsen</u>, Marin Vulić, Edward O'Brien, Jessica Byrant, Mary-Jane Lombardo, Christopher Ford, Matthew Henn

The presenting author, Elizabeth Halvorsen, and all co-authors listed are employees and shareholders of Seres Therapeutics

Funding for this work was, in part, received from CARB-X

The Gastrointestinal Microbiome May Be a Key Factor in HSCT outcome

~9,500 allogeneic hematopoietic stem cell transplantation (allo-HSCT) procedures in the U.S. annually

Infection and graft-versus-host disease (GVHD) account for approximately one-third of deaths within 100 days of allo-HSCT

Frequent use of antibiotics during HSCT correlates with increased risk of bloodstream infections (BSIs), GVHD, and mortality

The gastrointestinal tract is a reservoir for potential pathogens that can cause BSIs

Mortality is doubled in patients with low microbiome diversity

Seres Microbiome Therapeutics are Bacterial Consortia with Specific Pharmacological Properties

In a Phase 3 Study, Investigational Microbiome Therapeutic SER-109 Led to **Rapid Pharmacokinetic and Pharmacodynamic Changes Associated with Clinical Response in C. difficile Infection**

Pharmacokinetics

Engraftment of SER-109 dose species

Pharmacodynamics

Increased concentration

Clinical response

Reduction in CDI recurrence through restoration of colonization resistance

Clinical Development of SER-109 Suggests Microbiome Therapeutics May Reduce Carriage of Multi-Drug Resistant Organisms.

- (1) In an open-label Phase 1 study of SER-109, carriage of VRE was significantly reduced relative to baseline (Lombardo, IDWeek 2015).
- (2) In a Phase 2 placebo-controlled study, engraftment with SER-109 drug product species was associated with a significant reduction in the carriage of anti-microbial resistance genes. (Ford, IDWeek 2018).
- (3) In a Phase 3 placebo-controlled study, this finding was repeated: treatment with SER-109 drug product species was again associated with reduction in the carriage of anti-microbial resistance genes (See Late Breaker Talk – Straub, IDWeek 2021).

SER-155 is an Investigational Cultivated Microbiome Therapeutic Rationally- Designed to Reduce the Risk of BSI and GVHD in allo-HSCT Patients

Hypothesis: Barrier compromise, low microbiome diversity, and concomitant GI domination by potential pathogens drives risk of BSI, GI inflammation, and GVHD in allo-HSCT patients

SER-155 design targets both host and microbiome functions to:

Compositional and Functional Design Elements of SER-155 to Target Restoration of Colonization Resistance

Decolonize pathogens associated with risk of BSI, GVHD, and mortality

- Vancomycin-resistant Enterococci (VRE)
- Carbapenem-resistant Enterobacteriaceae (CRE)

Engraftment of taxa associated with positive clinical outcomes and survival

- Lachnospiraceae
- Eubacteriaceae
- Ruminococcaceae
- Erysipelotrichaceae

9 - Seres Therapeutics, Inc. © 2021

Iterative Reverse Translational Approach to Selecting Strains for SER-155 Starts with Patient Datasets

Reverse Translational Approach to Designing and Identifying SER-155, Starting with Patient Datasets

Multiple longitudinal patient GI microbiome datasets analyzed to identify species of interest for SER-155 design

- Observational datasets from adults undergoing HSCT (MSKCC, Univ. of Cologne)
- Interventional datasets from adults receiving Seres investigational microbiome therapeutics (SER-109, SER-287, and SER-262 clinical trials)

Multiple Longitudinal Patient GI Microbiome Datasets Were Analyzed to Identify Species of Interest for SER-155 Design

- Observational datasets from allo-HSCT patients at MSKCC and Univ. of Cologne were used to identify taxa depleted post-transplant and associated with reduced risk of BSI and GVHD
- 2) Interventional datasets from adults receiving Seres investigational microbiome therapeutics were used to further refine SER-155 candidate consortia to select species with a high probability of engrafting in the GI

Dysbiosis in allo-HSCT Patient Datasets Post-Transplant

Reverse Translational Approach to Designing and Identifying SER-155, Starting with Patient Datasets

Preclinical screening of candidate consortia

- Utilize Seres human-commensal strain library (>35,000 strains) to design and construct consortia
- In vivo and in vitro assays to screen for the ability to:
 - Inhibit and outcompete VRE, CRE & other pathobionts
 - Enhance/protect GI epithelial barrier integrity
 - Reduce GI inflammation

Breadth of Candidate Consortia Evaluated in Hit-to-Lead Identification for SER-155

Over 50 candidate consortia containing different combinations of nearly 150 species were designed and tested *in vitro* and *in vivo*

Blue lines indicate species tested and length of lines indicates increasing number of strains within a species tested

SER-155 Strains Can Compete for Nutrients to Restore Colonization Resistance Against Relevant Pathogens VRE and CRE

Carbon source utilization profiles of VRE, CRE, and SER-155 strains were assessed across 85 carbon sources

	1	2 3	4	5	6 7	8	9	10	11 12	2 13	14	15 1	6 17	18	19	20 2	21 2	2 23	3 24	4 25	5 26	27	28	29 3	30 3	1 32	2 33	3 34	35	36	37 3	38 3	9 4	0 41	42	43	44 4	15 4	6 47	48	8 49	50	51	52 5	53 5	4 5	5 56
CRE																																															
VRE																																															
strain 01																																															
strain 02																																															
strain 03														_																																	
strain 04																																															
strain 05																																															
strain 06																																															
strain 07																																															
strain 08																																															
strain 09																																															
strain 10															_																		_														
strain 11																																															
strain 12																																															
strain 13																																															
strain 14																																															
strain 15																																															
strain 16																																															

SER-155 Leads to a Reduction in VRE and CRE Titers In Vivo

In vivo, candidate consortia were evaluated in mouse models of VRE and CRE colonization and oral administration of SER-155 led to a 2-3 log reduction in VRE and CRE titers compared to untreated mice

Declining titers of CRE after SER-155 dosing

Conclusions

- SER-155 is an investigational cultivated microbiome therapeutic designed to reduce the risk of bloodstream infection and GvHD in adults undergoing allo-HSCT by restoring colonization resistance, enhancing epithelial barrier integrity, and reducing GI inflammation
- Preclinical assessments in vitro and in vivo support the ability of SER-155 to reduce VRE and CRE titers and restore colonization resistance

• A Phase 1b clinical trial evaluating SER-155 in allogeneic HSCT patients is currently enrolling (NCT04995653)

Acknowledgements

Memorial Sloan Kettering Cancer Center

Thank You

 \cap

Ì

