Abstract

Background: The human gut microbiome Is a diverse, dynamic and
complex ecosystem that modulates numerous host processes including
metabolism, Iinflammation and cellular and humoral immune responses.
Recent publications have suggested that the gut microbiota of cancer
patients Is predictive of response to Immune checkpoint inhibitors (ICI). To
better understand how the microbiome may impact response to ICIl, we
have developed and validated robust tumor models using both
conventional mice treated with antibiotics as well as germ free mice.
Results: We show that germ-free mice lacking a microbiome, as well as
antibiotics-treated mice faill to mount an effective anti-tumor Immune
response following treatment with anti-PD-1. The response to anti-PD-1
can be restored In germ free mice by introduction of a microbiome using
fecal material prepared from healthy donor stool, and Is driven by
Increased entry of tumor-infiltrating lymphocytes (TILs) into the tumor;
specifically CD8+ T cells. Importantly, for the first time, we show that the
bacterial spore fraction from healthy donor stool can restore response to
anti-PD-1 and Iincrease CD8+ TILs in both conventional mice treated with
antibiotics as well as germ free mice.

Based on these encouraging animal model data we plan to Initiate a
randomized, placebo-controlled clinical study at MD Anderson Cancer
Center In 2018, sponsored by the Parker Institute for Cancer
Immunotherapy, Iin patients with advanced metastatic melanoma. The
clinical trial will evaluate the impact of an anti-PD-1 checkpoint inhibitor
with adjunctive microbiome therapy on patient outcomes. Seres IS
developing SER-401, a preclinical stage oral microbiome therapy to
Improve the efficacy and safety of immunotherapy. Our drug discovery
strategy Iterates computational analyses with machine learning
approaches, as well as empirical in vitro, in vivo and ex-vivo screening of
strains and consortia to Inform selection and drive microbiome drug
design. Data from such a comprehensive approach Is invaluable for
designing compositions of bacteria that form “functional ecological
networks” that can impact response to ICI therapy. We believe these data
will provide insight into how microbiome drugs can be discovered and
developed In the setting of iImmunotherapy to augment the efficacy of ICls
by altering the cancer-immune set point.
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* Primary readouts: (i) safety/ tolerability (ii) tumor response and T cell infiltration vs. baseline
- Exploratory readouts: microbiome and metabolome correlates of clinical measures
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Figure 1. (A) Tumor growth kinetics and final tumor volumes
in mice bearing MC38 tumors and treated with anti-PD-1. (B) T
cell populations in tumors at end of study as assessed by flow
cytometry.
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Figure 2. (A) Tumor growth kinetics and final tumor volumes
in mice bearing MC38 tumors and treated with anti-PD-1.
Antibiotics (ampicillin, streptomycin, colistin) were
administered in the drinking water. (B) T cell populations in
tumors at end of study as assessed by flow cytometry.
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Figure 3. (A) Tumor growth kinetics and final tumor volumes in mice bearing MC38 tumors.
Antibiotics were delivered in the drinking water prior to administration of spore fraction

prepared from healthy donor stool. (B) T cell populations in tumors at end of study as
assessed by flow cytometry.
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Treatment with antibiotics negates anti-tumor efficacy of anti-PD-1
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Spore fraction of healthy donor stool restores anti-tumor efficacy
of anti-PD-1 after treatment with antibiotics
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Figure 4. (A) Tumor growth kinetics and final tumor volumes
in germ-free mice bearing MC38 tumors and treated with
anti-PD-1. (B) T cell populations in tumors at end of study as
assessed by flow cytometry.
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Figure 5. (A) Tumor growth kinetics and final tumor volumes
in ex-germ-free mice bearing MC38 tumors and treated with
anti-PD-1. Mice were colonized with FMT prepared from
healthy donor stool a few weeks prior to tumor cell
injection. (B) T cell populations in tumors at end of study as
assessed by flow cytometry.
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Figure 6. (A) Tumor growth kinetics and final tumor volumes
in ex-germ-free mice bearing MC38 tumors and treated with
anti-PD-1. Mice were colonized with the spore fraction
prepared from healthy donor stool a few weeks prior to
tumor cell injection. (B) T cell populations in tumors at end
of study as assessed by flow cytometry.
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Germ-free mice cannot promote anti-tumor immune response
after anti-PD-1 therapy
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Healthy donor FMT promotes anti-tumor immune response to
anti-PD-1
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n=8-10 mice per group for all studies
Statistical analysis was performed using two-tailed Student’s T test or one-way ANOVA with p<0.05
considered significant (*p<0.05; **p<0.01, ***p<0.001, ****p<0.0001).
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Spore fraction of healthy donor stool promotes anti-tumor
immune response with anti-PD-1 treatment
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